Analysis of coupled bimolecular reaction kinetics and diffusion by two-color fluorescence correlation spectroscopy: enhanced resolution of kinetics by resonance energy transfer.

نویسندگان

  • Erik F Y Hom
  • A S Verkman
چکیده

In two-color fluorescence correlation spectroscopy (TCFCS), the fluorescence intensities of two fluorescently-labeled species are cross-correlated over time and can be used to identify static and dynamic interactions. Generally, fluorophore labels are chosen that do not undergo Förster resonance energy transfer (FRET). Here, a general TCFCS theory is presented that accounts for the possibility of FRET between reactants in the reversible bimolecular reaction, [reaction: see text] where k(f) and k(b) are forward and reverse rate constants, respectively (dissociation constant K(d) = k(b)/k(f)). Using this theory, we systematically investigated the influence on the correlation function of FRET, reaction rates, reactant concentrations, diffusion, and component visibility. For reactants of comparable size and an energy-transfer efficiency of approximately 90%, experimentally measurable cross-correlation functions should be sensitive to reaction kinetics for K(d) > 10(-8) M and k(f) >or= approximately 10(7) M(-1)s(-1). Measured auto-correlation functions corresponding to donor and acceptor labels are generally less sensitive to reaction kinetics, although for the acceptor, this sensitivity increases as the visibility of the donor increases relative to the acceptor. In the absence of FRET or a significant hydrodynamic difference between reactant species, there is little effect of reaction kinetics on the shape of auto- and cross-correlation functions. Our results suggest that a subset of biologically relevant association-dissociation kinetics can be measured by TCFCS and that FRET can be advantageous in enhancing these effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid analysis of Forster resonance energy transfer by two-color global fluorescence correlation spectroscopy: trypsin proteinase reaction.

In this study we introduce the combination of two-color global fluorescence correlation spectroscopy (2CG-FCS) and Förster resonance energy transfer (FRET) as a very powerful combination for monitoring biochemical reactions on the basis of single molecule events. 2CG-FCS, which is a new variation emerging from the family of fluorescence correlation spectroscopy, globally analyzes the simultaneo...

متن کامل

Studying reaction kinetics by simultaneous FRET and cross-correlation analysis in a miniaturized continuous flow reactor

In this study we present a refined optical detection technique for investigation of fast reactions based on confocal fluorescence spectroscopy in a miniaturized continuous flow (mCF) reactor. The special setup allows for simultaneous observation of the reaction on the basis of fluorescent resonance energy transfer (FRET) as an indicator of the reaction progress. Determination of the flow veloci...

متن کامل

Study of kinetics, isotherms and thermodynamics of lead adsorption from aqueous solutions using Lignocellulose Nano-fibers (LCNFs)

The surface adsorption of heavy metals in effluents with nanoparticles is today asuitable method for effluents treatment. In the present study, lignocellulose nano-fibers(LCNFs) were used as natural adsorbent for lead adsorption. The aim was to evaluate leadadsorption using adsorption isotherms, kinetics and thermodynamics. Fourier TransformInfrared Sp...

متن کامل

Non-Arrhenius kinetics for the loop closure of a DNA hairpin.

Intramolecular chain diffusion is an elementary process in the conformational fluctuations of the DNA hairpin-loop. We have studied the temperature and viscosity dependence of a model DNA hairpin-loop by FRET (fluorescence resonance energy transfer) fluctuation spectroscopy (FRETfs). Apparent thermodynamic parameters were obtained by analyzing the correlation amplitude through a two-state model...

متن کامل

Adsorption of Ni2+ Ions onto NaX and NaY Zeolites: Equilibrium, Kinetics, Intra Crystalline Diffusion, and Thermodynamic Studies

This paper focuses on intra crystalline diffusion of Ni2+ ions onto NaX and NaY zeolites. The zeolites are obtained by the hydrothermal synthesis method. The samples were characterized by several techniques: X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) and InfraRed Spectroscopy (FT-IR). Physical parameters such as p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 83 1  شماره 

صفحات  -

تاریخ انتشار 2002